分享:醫用可降解鋅合金的生物相容性評價研究進展
鋅合金由于其適宜的腐蝕速率、良好的力學性能,成為繼鎂合金與鐵合金后的一種新型的可降解生物醫用金屬材料。近年來,研究者對鋅合金的設計、加工制備以及降解機理進行了大量研究,但對其體內外生物相容性的研究尚不充分,僅評估了體外細胞毒性、溶血、凝血,少數材料植入動物體內進行了組織相容性的表征。然而生物相容性涉及細胞、組織、血液、免疫等復雜的局部反應和全身反應,除了材料本身的物理化學性質,還受到材料與機體相互作用的影響。本文分析了可降解醫用鋅合金的化學成分和物相組成,闡明了對其進行生物學評價的方法,并結合鋅合金生物相容性研究現狀,闡述未來的研究方向。
關鍵詞:
不銹鋼、鈦合金和鈷鉻合金等醫用金屬材料因其優越的力學性能、界面穩定性和良好的生物相容性,廣泛應用于骨科及血管介入等植入性醫療器械[1,2]。然而,除了人工關節、脊柱內固定植入物等人體承重部位的器械需要提供永久支撐外,大多數時候人體對于植入物提供的支撐、固定等功能的需求只是暫時的。植入物長期存留體內還會帶來不可預期的負面影響,例如骨折的病人再次骨折的風險增加1.4~2.5倍,其中重要的因素就是骨折內固定用的不銹鋼板和螺釘與人體骨因彈性模量的巨大差異造成應力遮擋而引起骨質流失[3,4];約10%的患者支架術后存在內皮愈合不良或功能障礙導致的血管再狹窄和血栓,其原因即永久存在的支架平臺對血管的持續刺激[5,6]。此外,永久支架相當于給血管套了“金屬夾克(metal jacket)”,使血管舒張受限,特別是禁錮嬰兒或兒童正在生長的血管[7,8]。鋅合金是和鎂合金、鐵合金共同受到關注的一類可降解金屬。由于其腐蝕速率介于鎂合金與鐵合金之間,具有較為理想的降解行為,成為近年來的研究熱點[9,10]。Mg、Fe、Zn的性質見表1[11~15]。近年來,研究者對鋅合金的設計、加工制備以及降解機理進行了大量的研究,但對其體內外生物相容性的研究尚不充分,僅評估了體外細胞毒性、溶血、凝血,只有少數材料植入動物體內進行了組織相容性的表征。然而鋅合金器械在植入體內后,會引起一系列復雜的機體反應,同時機體生理活動中的力學運動、生物化學作用和生物電、磁場等作用會以各種形式影響其力學性能和降解行為,隨著材料的降解和力學性能的丟失,可能對機體的組織或器官產生復雜而長期的影響。因此系統、全面的生物相容性評價關系著鋅合金器械臨床應用的安全性和有效性。
Table 1
Metal | Standard electrode | Yield | Young's | Shear | Elastic | Hardness | Required | Develop |
---|---|---|---|---|---|---|---|---|
potential | strength | modulus | modulus | modulus | HV | element | -ability | |
V | MPa | GPa | GPa | GPa | ||||
Mg | -2.37 | 51-244 | 44-45.5 | 16-18 | 44-48 | 38 | Yes | No |
Zn | -0.76 | 285-325 | 90-110 | 35-45 | 14-32 | 42 | Yes | Yes |
Fe | -0.44 | 108-122 | 204-212 | 78-84 | 195-235 | 157 | Yes | Yes |
1 醫用鋅合金材料化學成分和物相組成分析
影響醫療器械生物相容性表現的最關鍵因素是用于制造器械的原材料的化學性質,在進行生物學試驗之前鑒別材料化學成分并考慮其毒理學影響是非常重要的[16]。醫用鋅合金一般由高純Zn粉(> 99.99%,質量分數)加一定比例的高純無毒合金化元素熔煉成鋅合金鑄錠,經過塑性加工和熱處理制成棒材、線材、板材等產品,再經過深加工變成多種植入器件[17~20]。在加工過程中,雖然有塑性加工冷卻劑、軋制油等附著在表面,但經過清洗和表面打磨后,通常沒有殘留。
由于合金元素含量一般比較低,Zn(OH)2、ZnO、Zn3(PO4)2和ZnCO3是降解過程中的主要產物[21,22]。表2列出了鋅合金主要降解產物的物理化學和毒理學性質。Zn(OH)2是鋅合金降解的中間產物,常與ZnCO3共價結合ZnCO3·3Zn(OH)2。ZnO微溶于水,具有收斂性和抗菌能力,也是常用的營養增補劑。ZnCO3·3Zn(OH)2不溶于水,也無毒。相對于ZnO和Zn(OH)2,Zn3(PO4)2可溶于水,更容易被機體轉運、吸收。一個鋅支架大約50 mg,以全部轉化為Zn2+計算,遠低于導致全身毒性的安全閾值(ZnCl2的半數致死量約為500 g/人)。此外,Zn是人體必需的微量金屬元素,組織分布廣泛,鋅合金植入物游離出來的鋅離子可能還會參與維持機體生理功能和正常代謝[23]。人體內至少300種酶以Zn為輔助因子參與糖類、脂質、蛋白質和核酸代謝[24,25]。從DNA甲基化的表觀遺傳變化到發育,癌癥進展/抑制,骨骼重塑/礦化和動脈粥樣硬化,Zn在預防和治療各種病理狀況中起著關鍵作用[26,27]。Hennig等[28]的綜述文章表明,Zn具有很強的抗動脈粥樣硬化特性,作者認為,這種行為源于鋅離子作為抗氧化劑和內皮細胞膜穩定劑的作用。另外,Zn也是骨骼形成和礦化必需的元素,能夠刺激成骨細胞生長,同時抑制破骨細胞行使骨吸收的功能[29]。在大腦中,Zn可通過谷氨酸能神經元儲存在特定的突觸囊泡中,調節大腦的興奮性,對大腦和中樞神經正常功能的發揮起著至關重要的作用[30,31]。Zn的組織分布和功能多樣性為鋅合金的臨床應用提供了先決條件。鋅合金的加工過程及其降解產物的性質表明了鋅合金在人體中的應用具備基本的安全性,可以用來制做血管支架、腔道支架、軟組織閉合和傷口修復、骨修復產品(夾、釘)等[32~35]。
表2 鋅合金主要降解產物的性質
Table 2
Degradation | Solubility, 20oC | Stability | Density | LD50, acute systemic | Equivalent to human | Toxicity |
---|---|---|---|---|---|---|
product | g·L-1 | g·cm-3 | toxicity, oral, rat | lethal dose | level | |
mg·kg-1 | g | |||||
ZnO | 0.0029, | Stable | 5.68 | > 2000 | 50 | Low toxicity |
slightly soluble | ||||||
ZnCO3·3Zn(OH)2 | Insoluble | Stable | - | > 10000 | 500 | Non-toxic |
Zn3(PO4)2 | 2.7, | Stable | - | > 5000 | 500 | Non-toxic |
slightly soluble | ||||||
ZnCl2 | Soluble | Stable | 1.01 | > 5000 | 500 | Non-toxic |
2 生物相容性評價方法
根據ISO 10993-1:2018 的定義,生物相容性是指醫療器械或材料在一個特定應用中引起恰當宿主反應的能力[36]。圖1[37,38]展示了材料植入后的機體反應及機體與材料(器械)的相互作用。當材料(器械)植入機體后,首先引起機體損傷修復,包括急性和慢性的炎癥反應,通過適度的纖維包裹達到植入物與機體的穩態。整個過程中植入物會通過物理化學作用(溶出、降解等)、單純的機械作用(運動、摩擦等)等影響機體應答,同時又會因機體的反應而影響材料本身[37,38]。植入物的生物相容性評價廣義上講是個動態的、長期的,貫穿研發、生產、臨床應用全生命周期風險管理的過程[39]。
圖1

圖1 材料植入后的機體反應及機體與材料的相互作用[37,38]
Fig.1 Body response to material implantation and body-material interactions[37,38]
2.1 生物相容性影響因素
影響醫療器械生物相容性的因素主要有:(1) 材料物理化學、形態學和表面特性表征;(2) 工藝過程中預期的添加劑,產生的工藝污染物和殘留物;(3) 可瀝濾物質;(4) 不同組件間的相互作用;(5) 終產品的性能與特點。器械中相關原材料、工藝污染物、可瀝濾物的化學特性與生物相容性關系最為緊密,其與組織的接觸性質、程度、頻率和持續時間極大影響機體的反應[40]。有證據表明,一些金屬元素,特別是Ni,可以刺激免疫系統,在包括過敏反應和炎癥反應在內的不同病理的發生中發揮作用[41,42]。接受含Ni血管內支架的患者發生再狹窄一定程度上跟鎳過敏有關[43,44]。除此之外,物理特性對器械的生物相容性也有較大影響,如多孔材料的孔徑尺寸和孔隙率影響組織細胞的黏附、生長[45,46],磨損的顆粒尺寸和形狀影響局部組織的炎癥反應程度[47,48]。材料表面的拓撲結構如表面粗糙度、曲率及規則的幾何圖案影響蛋白質的黏附、細胞的增殖及形成血流的擾動[49,50]。血漿中的凝血因子蛋白在血液接觸器件表面的快速吸附和激活是誘發血栓生成的主要途徑[51,52]。值得注意的是,降解產物及周期影響植入物與人體的動態反應,一些可降解止血材料(如淀粉多糖、殼聚糖、再生氧化纖維素等)相較于非降解材料(如高密度聚乙烯)往往在植入試驗中表現出程度更高、周期更長的炎癥反應[53,54]。
2.2 生物學評價方法
目前我國對擬上市醫療器械的生物學評價采用GB/T 16886標準,該系列標準等同采用ISO 10993國際標準。根據GB/T 16886.1—2022 《醫療器械生物學評價 第一部分:風險管理過程中的評價與試驗》對醫療器械按臨床使用部位和接觸時間分類,以選擇合適的生物學試驗項目。
表3列出了醫用鋅合金器械需考慮的必要生物學試驗項目。對于醫用鋅合金制作的可降解的植入組織/骨的醫療器械,一般選取細胞毒性、皮膚刺激、遲發型超敏反應、急性全身毒性反應、(亞)慢性全身毒性反應、遺傳毒性、植入后局部反應和降解。表4列出了需考慮的補充試驗項目。例如,如果用于制造接觸循環血液的支架,應增加血液學評價;如果用于制造宮內節育器、子宮托等與生殖系統有關的醫療器械,應增加生殖發育毒性的相關試驗。理論上,還應考慮進行毒代動力學試驗,但其必要性應結合器械/材料的預期用途,終產品化學組分,降解產物及可瀝濾物(參照GB/T 16886.16—2021)。以支架為例,切割拋光好的鋅支架重量大概50 mg,以全部是Zn元素計算,假設在1 a內完全降解,預期的每日劑量為140 μg,僅是成年男性推薦每日攝入量15 mg的1%。因此鋅支架的植入并不會影響機體的血液系統、神經系統、消化系統、免疫系統等,如果鋅支架在原位的降解過程沒有引發強烈的炎癥和過敏反應,即可認為無需進行毒代動力學的研究。同樣的,只有當來自其他來源的數據表明有腫瘤誘導的傾向時,才應進行致癌性試驗(參照GB/T16886.3—2019)。致癌性試驗沒有規定的標準和方法,可在動物試驗中觀察和記錄原位組織和易感組織的腫瘤生成情況。
表3 鋅合金植入器械必要的生物學試驗項目
Table 3
Test item | Current standard | Purpose and method | Judgement criterion | |
---|---|---|---|---|
Cellular response |
Cell toxicity |
GB/ T16886.5—2017 |
The device/extract was cultured with cells, its potential cytotoxicity was evaluated by morphology and metabolic activity, such as MTT method | Cell viability > 70% was considered non-cytotoxic. For Zn-based materials, it is generally necessary to dilute the extract over a range of concentrations. Evaluate the result in vitro and in vivo comprehensively |
Tissue response |
Intradermal reaction |
GB/T16886.10—2017 | Intradermal injection of devices/materials extracts on the back skin of rabbits, to evaluate the non-specific percutaneous acute irritant effects of leachables | Erythema, edema, eschar, etc., were observed and scored according to the standard. The difference between the average scores of the test sample and the control should not be greater than 1.0 |
Implantation & degradation |
GB/ T16886.6—2015 |
Final devices/materials are implanted by surgical or interventional operation, and the target tissues are collected and observed at different time points to evaluate the local toxic effect of the sample on the living tissue and the degradation process (product) | Different degrees of tissue reactions (aseptic inflammation, fibrous cysts around the implant, etc.) will appear after implantion. With the influence of degradation, the reaction is higher and longer relatively. It's best to set a similar marketed product control | |
Immune response |
Delayed type hypersensitivity |
GB/T16886.10—2017 |
The immunity is usually induced by injecting the extract of the device/material plus protein to guinea pigs, and stimulated again after 2 weeks. Then the skin reaction is observed to evaluate the potential contact sensitization of the sample | No local skin erythema, edema and other inflammatory manifestations was considered to be no delayed type hypersensitivity reaction. Allergic reactions do not limit its use necessarily |
Systemic response |
Acute systemic toxicity |
GB/T16886.11—2011 |
Mouse is used routinely. Intravenous and intraperitoneal injection of the device/material extract is contacted with animals. The systemic response is observed to evaluate whether the sample releases toxic substances and produces acute systemic toxicity. The maximum exposure dose is 50 mL·kg-1 body weight |
Clinical performance (coat, skin, mucous membranes, respiration, muscles, behavior, etc.) should be observed and no indications. Gross pathological evaluation should be considered if clinically indicated |
(Sub)chronic systemic toxicity |
Rat is used routinely. The devices/materials or extracts are (repeatedly) contacted with animals by appropriate routes such as implantation, intravenous or intraperitoneal injection. The dose range is determined according to human safety limits. Clinical manifestations, body weight changes, hematological and clinical biochemical indicators, clinical pathological, gross pathological and histopathological analysis, etc., to evaluate whether the long-term exposure of sample to the human body will release toxic substances and produce (sub)chronic systemic toxicity |
Compared with the control group, no significant difference should be observed in each index |
||
Blood system |
Hemolysis |
GB/ T16886.4—2003 |
Direct contact of blood with the device/material or its extract, measuring the amount of hemoglobin released by erythrocytes to evaluate the degree of erythrocytelysis and hemoglobin release caused by the device/material |
Hemolysis rate should be < 5% |
Genetic system |
Genotoxicity |
GB/ T16886.3—2019 |
Mammalian or non-mammalian cells, bacteria, yeast or fungi are used to determine whether a device/material or extract causes genetic mutations, changes in chromosome structure and number, or other changes in DNA or genes. Bacterial gene mutation, chromosomal aberration and mouse lymphoma test are the most used in vitro tests |
There should be no significant difference compared to the negative control. If the in vitro test cannot be carried out or the results are confusing, further in vivo chromosome analysis and micronucleus test of mammalian bone marrow cells should be used |
表4 鋅合金植入器械補充的生物學試驗項目
Table 4
Test item | Current standard | Purpose and method | Judgement criterion | |
---|---|---|---|---|
Blood system |
Coagulation |
GB/ T16886.4—2003 |
The devices/materials are directly contacted with venous blood and poor platelet plasma (usually rabbits), respectively, and the clotting time is measured to evaluate whether the sample contains endogenous coagulation system activators |
Specify the acceptable criteria of the device/material on a verifiable basis (eg, compared to an approved device of the same type) |
Platelet adhesion |
The device/material is co-cultured with fresh sodium citrate anticoagulated whole blood (human, sheep or rabbit, etc.). The platelet adhesion on the surface of sample is observed to evaluate the effect of the sample on platelet performance | |||
Thrombosis |
The device/material is implanted into the vein. Thrombus formation on the surface of the sample and the intima surface of the blood vessel are observed and scored to evaluate the potential of forming thrombosis | |||
Complement system |
The device/material is contacted with human serum, and the concentration of C3a fragment formed during complement system activation is assessed by enzyme-linked immunosorbent assay to evaluate the effect of the sample on complement activation | |||
Reproductive system |
Reproductive toxicity |
GB/ T16886.3—2019 |
8-10 weeks before mating, male and female animals (mouse) are continuously exposed to device/material or extracts until 21 d after the birth of F1 generation. The sexual function, estrus cycle, mating behavior, conception, parturition, lactation, and weaning of animals as well as the growth, development, deformity, morbidity and mortality of offspring are observed and recorded, to evaluate the influence of the sample on the reproductive function and embryonic development |
There should be no significant difference compared to the negative control |
Metabolic system |
Toxicokinetics |
GB/T16886.16—2021 |
To study the quantitative changes in the process of absorption, distribution, metabolism and excretion of the test substance in the body, degradation products, leachables, and metabolites of device/material should be qualitatively detected and quantitatively analyzed. Rodent models (rats, mice) are generally used. Blood, urine, feces and bile are collected regularly after exposure, and the heart, liver, spleen, stomach, kidney, gastrointestinal tract, gonads, brain, body fat, skeletal muscle and other tissues are collected, respectively, to determine the distribution of the test substance. Bioavailability, toxicity-time curve, apparent volume of distribution, clearance rate, half-life, average residence time, maximum and maximum concentration (time) of the test substance were measured through the toxicokinetic model |
The mathematical model expression of metabolic process, combing with the physical and chemical shape, administration route, dose and method of the test substance is evaluated comprehensively |
醫療器械生物學試驗的方法大多源自藥物或化妝品的毒理學方法,樣品制備方法也是針對不可降解材料,通過浸提的方法提取產品中的可瀝濾物、加工助劑等可能影響產品生物相容性的物質。浸提過程受溫度、時間、浸提介質(極性、非極性)、浸提比例以及材料的相平衡影響,因此GB/T 16886.12—2017對浸提液制備條件和方法進行了具體規定。由于鋅合金在體內外降解行為的差異以及復雜的臨床應用場景(血管支架、腔道支架、骨釘骨板、吻合釘、宮內節育器等),為避免受到不必要的限制或產生虛假的安全感,因此尚無針對該類產品的標準浸提液制備方法。當采用浸提液進行體內試驗(如致敏、皮內反應、全身毒性、遺傳毒性等)時,如浸提液中出現顆粒物無法直接用于試驗,可考慮采用過濾、離心等方式去除,但應通過電感耦合等離子體發射光譜(ICP-OES)或電感耦合等離子體質譜(ICP-MS)等手段分析處理前后的元素組成和濃度,并進行方法學論證(參照GB/T 13748.15—2013)。如浸提原液具有細胞毒性,應分析其原因并對浸提原液進行梯度稀釋(至無細胞毒性),再結合體內試驗中植入物附近降解產物大量釋放或積聚時對局部細胞活性及局部組織炎癥反應的影響,對產品的生物安全性進行綜合評價(參照GB/T 16886.15—2003)。
3 鋅合金生物相容性研究現狀
生物相容性評價最終以產品為導向,但目前鋅合金植入器械只有用于頜面修復的骨板骨釘和心血管支架走到了臨床試驗階段,未見其他產品報道進展。因此本文通過鋅合金材料的生物相容性分析研究進展和未來的方向。
3.1 細胞毒性研究
細胞是發揮生物體功能的基本單位,細胞毒性是生物學試驗中的首選項目,可為其他生物學危險源的識別和評估提供初步證據[55]。對于可降解醫用金屬器械/材料,細胞毒性主要受以下方面影響:金屬表面性質如形貌、表面能、離子釋放濃度、降解產物以及局部微環境(如pH值)變化[56~58]。其中,對細胞毒性影響最大的是離子濃度。根據對人體的作用分為有益金屬離子(如鈣、鎂、鐵、鋅等離子)和有害金屬離子(如汞、鉻等離子)。即使是有益的金屬離子,與人體的關系仍然存在劑量效應,當濃度太高時,也會因阻礙其他有益金屬的結合而產生毒性。Ma等[59]研究了人主動脈內皮細胞(HAEC)在不同濃度(0~140 μmol/L) Zn2+環境中的短期細胞反應。低濃度Zn2+可使細胞活力、增殖、黏附、擴散和遷移能力增強,同時降低細胞黏附強度。然而,較高濃度Zn2+ (> 100 μmol/L)對HAEC行為表現出相反的影響(抑制細胞活力、增殖、遷移等)。Shearier等[60]研究顯示,人體細胞對Zn2+的耐受性:HAEC (半數致死量LD50:265 μmol/L) > 平滑肌細胞(AoSMC) (LD50:70 μmol/L) > 真皮成纖維細胞(HDF) (LD50:50 μmol/L)。Kubasek等[61]研究表明,Zn2+對人骨肉瘤細胞(U-2 OS)和鼠成纖維細胞(L929)最大安全濃度分別為120和80 μmol/L。研究者們普遍認為不同的細胞品系針對鋅合金材料會表現出不同的細胞反應,大概是由于不同類型的細胞尺寸、形態、細胞膜的轉運過程、行使的功能以及細胞所處的微環境存在差異。這提示不同的可降解鋅合金材料可能有其最佳應用場景,比如某一類材料更適合做骨科植入物、血管支架、腔道支架甚至宮內節育器。
在同一種應用場景下,有哪些措施可以改善鋅合金器械/材料的細胞相容性呢? (1) 制備鋅合金保護膜涂層。Shearier等[60]在金屬Zn片上直接培養HAEC、AoSMC和HDF細胞,發現活細胞的數量幾乎可以忽略不計。膠原蛋白和明膠表面修飾過的Zn片上,以上細胞均可附著和增殖。Jablonska等[62]在模擬體液(SBF)中預孵育Zn-1.5Mg合金,在表面形成保護性膜層,也可以減少離子釋放量并增強初始細胞黏附。(2)添加適宜的合金化元素[63]。Shi等[64]制備了Zn-0.8Mn、Zn-0.8Mn-0.4Ag、Zn-0.8Mn-0.4Cu和Zn-0.8Mn-0.4Ca 4種合金,并在同一條件下進行細胞毒性試驗。合金元素對細胞存活率的積極影響是Cu > Ca > Ag,在浸提液濃度為80%和60%時表現得最為顯著。Li等[65]制備了純Zn和Zn-4Ag的金屬片,同樣對其浸提液稀釋3倍和L929細胞共培養2 d,純Zn組細胞活力約106%,而Zn-4Ag組細胞活力約70%。這說明Ag對L929細胞的增殖有很強的負向作用。(3) 合金組織的影響。合金組織對體外細胞毒性最大的影響在于調控鋅合金材料的降解性能,影響浸提液中Zn2+的含量。對于不可降解的合金,可以通過體外細胞直接接觸法評估組織的影響。對于鋅合金,因在細胞培養的過程中釋放Zn2+則無法進行評估,只能通過原位植入的方式觀察細胞的黏附、生長和遷移。
在研究階段,鋅合金材料表現出體外細胞毒性是否預示臨床應用的安全性問題呢?不一定。人體血液中的Zn2+濃度約為120 μmol/L,心臟中高達400 μmol/L[66],遠高于體外研究的細胞毒性濃度閾值。在體外細胞毒性試驗中,鋅合金接觸的是開放的極性環境(細胞培養基),與長期植入體內的降解機制和降解產物有顯著差異。另外,體外培養的單層細胞,失去了神經體液的調節和細胞間的相互影響,缺乏在體細胞動態平衡的相對穩定環境,對毒性極其敏感。表5分析了可降解醫用金屬器械/材料與傳統不可降解醫用金屬器械/材料在細胞毒性試驗方面的考慮。有研究[67]指出,當前ISO標準(例如ISO 10993-5或ISO 10993-12)不適用于可降解生物金屬,需進行適當調整。例如對鎂合金的細胞毒性評價,Wang等[68]系統地比較了體內外鎂合金的降解速率、產物、pH值、滲透壓的影響,按照ISO標準制備材料浸提液,再稀釋10倍后與細胞共培養,以便對可降解鎂合金進行較可靠的體外細胞毒性評估。通過體內外目標離子濃度的換算求得試驗時“最接近臨床應用狀況”,可能同樣適用于可降解鋅合金。不同細胞的培養基成分不同,血清蛋白的種類和含量不同,會影響鋅合金的降解和細胞對有毒物質的反應,因此建議進一步研究時采用統一的陽性對照做為標準參考,對鋅合金臨床應用會更具參考意義。
表5 可降解與傳統金屬植入器械/材料在細胞毒性試驗中的異同
Table 5
Item | Traditional metal implant devices/materials | Degradable metal implant devices/materials |
---|---|---|
Material type | Stainless steel, nickel-titanium alloy, cobalt-chromium alloy, titanium alloy, etc. | Zn alloy, Mg alloy, Fe alloy, etc. |
Property | Inert | Bioactive |
Principle |
Support, occupy space, etc., by physical properties to achieve clinical therapeutic effects | Physical properties function in the early stage, then the materials degrade and the target lesion tissue remodels gradually |
Potential source of cytotoxicity |
Processing aids, leachables | Processing aids, leachables, degradation products (ions), pH, osmotic pressure, surface energy, etc. |
Sterilization method | Not limited to ethylene oxide (EO), irradiation sterilization, etc. | Methods with minimal impact on material properties |
Evaluation endpoint | Morphological evaluation, cell growth ability, and metabolic characteristics (microscopic observation + MTT method, etc.) | |
Contact way |
Extraction method, direct or indirect contact method can be selected according to the principle of "closest to the application situation". Generally, the extraction method is recommended | Extraction method, direct or indirect contact method can be selected according to the principle of "closest to the application situation" |
Extraction medium |
The ability to support cell growth and to extract both polar and non-polar substances | Cell culture medium with serum, generally. The ratio of serum can be adjusted according to the effect of serum on the material |
Extraction condition |
Generally (37 ± 1)oC, (24 ± 2) h |
The appropriate extraction time can be selected according to the implantation time, degradation rate and degradation products in vivo. Evaluation of multiple extraction times are also necessary to fully understand and assess biological risks |
Extraction ratio | (Surface area or mass / volume) ± 10% | |
Extraction | Dilution is not recommended generally | Multiple dilutions may be necessary |
Extraction treatment | Adjustment is not recommended generally | Filtration, centrifugation, pH adjustment, etc., can be used, but treatment should be recorded and evaluated |
Cell line |
Suitable cell lines recognized by ISO experts, such as mouse fibroblast CCL1 (L929), mouse embryonic fibroblast CCL163 (Balb/3T3 clone A31), etc. L929 cells are generally used in China | Depending on the application site, sensitivity- or site-specific cells may be required to evaluate their cellular responses more objectively |
3.2 鋅合金的血液相容性研究
根據ISO 10993-4的定義,血液相容性是血液對外源性物質或材料產生合乎要求的反應[26]。血液學機理和血液成分的功能比較復雜,可以明確的是血液中含有多種蛋白質,包括纖維蛋白原、血清白蛋白、免疫球蛋白、補體蛋白等。當血液相容性不良的材料與血液接觸的數秒內,白蛋白、γ-球蛋白、纖維蛋白原等蛋白分子即在材料表面發生非特異性吸附,之后引發血小板及白細胞在材料表面的聚集、黏附和活化,繼而凝血系統和纖溶系統激活,補體激活,以及誘發各種細胞因子參與的細胞免疫應答等[51,69,70]。這些事件高度相關,最終形成血栓和炎癥反應。而血栓和炎癥反應是關系骨植入和心血管植入材料體內應用成敗的關鍵。
在一項以316L不銹鋼、純Zn和鋅合金為對照的研究[83]中,系統評估了Zn-0.8Cu、Zn-0.8Mn和Zn-0.8Li 3種鋅合金的血液相容性。研究顯示,316L不銹鋼、純Zn、Zn-0.8Cu、Zn-0.8Mn和Zn-0.8Li的溶血率分別為0.38% ± 0.08%、1.04% ± 0.21%、0.47% ± 0.21%、0.57% ± 0.14%和0.52% ± 0.22%。在血小板黏附試驗中,鋅合金表面的血小板呈圓形,幾乎沒有偽足擴散。數量上,鋅合金與316L不銹鋼相比無統計學差異,但明顯少于純Zn組。并且,表面均未觀察到明顯的血小板活化、血細胞聚集、凝血或補體活化現象。此外,鋅合金延長了血液的凝血酶原時間(PT)和部分凝血活酶時間(PTT),暗示了其潛在的抗凝功能。此外,其他研究[72~74]報道的鋅合金材料的溶血性能均小于5%,符合ISO標準的要求。因此,鋅合金材料的血液相容性良好,滿足作為骨科和心血管植入材料的要求。值得一提的是,材料的加工工藝、表面特性等關系著醫療器械終產品的血液相容性的好壞。如鋅合金材料制成了與循環血液直接接觸的支架等,應基于終產品進行血液相容性的全面評價。
3.3 鋅合金的體內試驗
2013年,Bowen等[75]首次將純Zn絲植入到Sprague-Dawley (SD)大鼠主動脈,6個月后Zn絲周圍的組織反應良好,并沒有明顯的壞死。之后,研究人員又將純Zn絲植入到大鼠腹主動脈6.5個月后進行觀察,組織學檢查表明植入的Zn絲與動脈組織具有良好的生物相容性,沒有出現引發血管再狹窄的炎癥反應、局部壞死和內膜增生,血管組織在支架降解部位再生良好。另外,Zn絲周圍的細胞密度較低,明顯缺乏平滑肌細胞,這表明Zn具有抗增殖作用,可有效防范支架植入后的再狹窄[76]。同樣的方法植入純Fe絲到大鼠的主動脈,鐵絲附近無細胞和組織的長入,說明純Zn比純Fe在體內的生物相容性更好[77]。
為探索鋅合金在血管支架方面的應用,Yang等[78]將純Zn支架植入到兔子主動脈1 a時間,植入期間,兔子動脈內沒有出現炎癥、血小板聚集、血栓形成和明顯的內膜增生,支架降解的過程中血管發生了良性重塑。此外,還發現了與血管重塑過程相匹配的Zn支架降解行為:前6個月內,純Zn支架可以保持力學完整性,12個月后約40%的支架已經降解。純Zn在體內的表現證明其做為可降解醫用材料的優勢,降解速率適宜,生物相容性良好。但是純Zn的力學性能較差,需要加入合金化元素才能滿足特定的應用需求。
Li、Mg、Al的加入(Zn-0.1Li、Zn-0.2Mg、Zn-0.5Mg、Zn-8Mg、Zn-1Al、Zn-3Al、Zn-5Al)改善了力學性能,卻使得上述合金在體內(大鼠腹主動脈)的生物學表現更差[79~81]。植入11個月后,在Zn-Li合金組中仍觀察到中等程度的慢性炎癥反應,并伴非阻塞性的新生內膜增厚[79]。與純Zn相比,Zn-xMg合金隨著Mg含量的增加,生物相容性呈輕微惡化的趨勢,炎癥細胞浸潤和新生內膜活化略有升高。植入6個月時,Zn-8Mg沒有顯示出明顯的內膜增厚,但表現出中等程度的慢性炎癥,以及管腔橫截面積的減少。植入11個月時,炎癥有一定程度消退,但出現內膜增厚,并伴有不連續的內皮細胞[80]。Zn-xAl表現略好,在植入3個月時,仍可觀察到中性粒細胞和嗜酸性粒細胞浸潤的急性局部炎癥。植入6個月時,觀察到植入物周圍致密的纖維化沉積物,未檢測到壞死組織,與周圍動脈組織具有可接受的相容性[81]。
任何材料在植入體內后,均會引起機體一個急性的炎癥反應,表現為材料與局部組織接觸處的淋巴細胞和少量嗜酸性粒細胞浸潤。對于生物相容性好的材料,1~2周后炎癥逐漸消退,形成適度的纖維包裹,否則會引發更嚴重的急性炎癥反應或長期的慢性炎癥[82]。上述合金比純Zn生物相容性差的原因大致在2個方面:(1) Li、Mg、Al元素的添加加速了鋅合金的腐蝕,大量的腐蝕產物造成炎性細胞、巨噬細胞的聚集,無法在短時間清除和達成穩態;(2) 合金的顯微組織、表面和晶間化合物可能對細胞產生一定的影響。例如,Mg2Zn11顆粒可能導致有害的巨噬細胞反應,破壞鋅基金屬傳遞的積極重構效應[80]。
在惰性氣體保護下,以99.999%高純Zn和99.995%高純Cu為原料,經熔煉、軋制、擠出、拉拔、退火、激光雕刻、拋光、酸洗、環氧乙烷滅菌、解析等工藝流程制備的Zn-0.8Cu冠狀動脈支架是目前唯一的一款已經中國國家藥品監督管理局批準進入人體臨床試驗的鋅合金血管支架。與兔、大鼠等小動物相比,豬的冠狀動脈與人體冠狀動脈在血管尺寸、解剖學特征、新生內膜生長方面最為相近,因此豬冠狀動脈植入模型是評價支架的降解周期、力學性能、降解產物同組織的相容性及組織反應的重要手段[83]。Zn-0.8Cu支架植入豬的冠狀動脈長達24個月,結果顯示,支架植入后1個月內完成血管內皮化,在植入的24個月內提供了足夠的結構支撐并顯示出適當的降解速率。支架植入3個月后,支架桿周圍聚集有細胞核深染的上皮細胞樣巨噬細胞,植入9個月后巨噬細胞浸潤減少,并轉變為輕度炎癥,支架桿降解部分被平滑肌細胞取代。降解產物在支架桿周圍形成后,可以分解成小尺寸的產物(< 20 μm)并向血管外膜的方向擴散,而不是滯留在原位成為不易擴散和降解的大尺寸團聚物。腐蝕產物的向外遷移一般有2種可能性,一是通過細胞間途徑中的體液,二是通過細胞路徑中的細胞吞噬。研究觀測到多核異物巨細胞吞噬Zn-0.8Cu支架降解產物碎片的直接證據。在支架植入后6、12和24個月時,檢測Zn元素在植入段血管近端5 mm處血管、遠端5 mm處血管和心尖部位組織的含量,結果顯示,不論是Zn-0.8Cu支架組和不銹鋼支架對照組之間,還是植入段血管的遠端與近端之間,Zn元素的含量均無顯著差異。光學相干斷層成像(optical coherence tomography,OCT)觀察到新生內膜光滑,沒有發現血栓形成或嚴重的炎癥反應[84]。Oliver等[85]觀測到Cu在Zn-Ag基合金植入SD大鼠腹主動脈后炎癥抑制(inflammation-resistance)的現象,通過細胞免疫熒光染色(immunofluorescence)等方法證實合金中的銅離子促進了植入物表面NO的產生,而NO能夠抑制血小板黏附、平滑肌細胞增殖和白細胞黏附等。表6[75,76,78~81,84~86]總結了鋅合金在血管中應用的動物試驗。
表6 鋅合金在血管中應用的動物試驗總結[75,76,78~81,84~86]
Table 6
Material |
Shape |
Disinfection/sterilization |
Animal |
Implant site |
Implant period month |
Performance |
Ref. |
---|---|---|---|---|---|---|---|
99.99% pure Zn |
Wire, Φ0.25 mm × 15 mm |
UV irradiation |
SD rats |
Abdominal aorta |
1.5, 3, 4.5, 6; 2.5, 4, 6.5 |
At 2.5 months of implantation, neoendothelialization was completed. The neointima contains a thin layer of SMCs and an area of low-density inflammatory cells adjacent to the zinc metal layer and within the corrosion layer, with no signs of necrosis. Despite rapid corrosion after 4 months implantation, the thickness of the neointimal layer did not increase over time. Migration and matrix formation of nucleated cells in the corroded area were observed. No inflammatory response, local necrosis, and progressive intimal hyperplasia were observed | |
99.99% pure Zn |
Long wire, Φ0.25 mm |
70% ethanol disinfection |
SD rats |
Abdominal aorta |
1~12, 14, 20 |
At 5, 6, and 8 months of implantation, there was higher cell density and chronic inflammation possibly related to stable corrosive activity. Chronic inflammation subsided between 10 and 20 months. No clear evidence of large-scale cytotoxicity was detected at any time point |
[86] |
99.995% pure Zn |
Stents, Φ3.0 mm × 10 mm, strut thickness: 165 μm |
- |
Japanese rabbits |
Abdominal aorta |
1, 3, 6, 12 |
No significant platelet adhesion or membranous thrombosis was observed after 3 d implantation. Neointimal coverage was observed at 1 month, indicating rapid endothelialization. No significant intimal hyperplasia or lumen loss was found at any time point, and no severe inflammation, platelet aggregation, or thrombosis was observed |
[78] |
Zn-0.1Li |
Wire, Φ0.25 mm × 10 mm |
- |
SD rats |
Abdominal aorta |
2, 4, 6.5, 9, 12 |
At 11 months postimplantation, moderate chronic inflammation with non-obstructive neointima was still observed in the Zn-Li alloy group. Biocompatibility is slightly worse than pure Zn |
[79] |
Material | Shape | Disinfection/ | Animal | Implant site | Implant | Performance | Ref. |
sterilization | period | ||||||
month | |||||||
Zn, Zn-xMg (x = 0.2, 0.5, 8) |
Wire, 15 mm segment |
Disinfection |
SD rats |
Abdominal aorta |
1.5, 3, 4.5, 6, 11 |
Compared with pure Zn, the biocompatibility of Zn-xMg alloy showed a slight deterioration trend with the increase of Mg content. The inflammatory cell infiltration and neointima activation increased slightly. At 6 months, Zn-8Mg did not show significant intimal thickening, but exhibited moderate chronic inflammation and a reduction in the cross-sectional area of the lumen. At 11 months, inflammation had some resolution, but intimal thickening with discontinuous endothelial cells was appeared. It is speculated that Mg2Zn11 particles may induce deleterious macrophage responses thus disrupting the positive remodeling effect of Zn |
[80] |
Zn-xAl (x = 1, 3, 5) |
Strip, 12 mm × 300 μm × 300 μm |
70% ethanol disinfection |
SD rats |
Abdominal aorta |
1.5, 3, 4.5, 6 |
At 3 months of implantation, acute local inflammation with neutrophilic and eosinophilic infiltration was still observed. At 6 months, dense fibrotic deposits around the implant were observed, no necrotic tissue was detected. Zn-xAl had acceptable compatibility with surrounding arterial tissue |
[81] |
Zn-0.8Cu |
Stent, Φ3.0 mm × 20 mm, wall thickness: ~127 μm |
EO sterilization |
White pigs |
Coronary artery |
1, 3, 6, 9, 12, 18, 24 |
Vascular endothelialization was completed within 1 months after stent implantation. ZnCu stent provided adequate structural support and exhibited an appropriate rate of degradation within 24 months, with no accumulation of degradation products, thrombosis or inflammatory responses |
[84] |
Zn-4Ag, Zn-4Ag-0.6Mn, Zn-4Ag- 0.8Cu-0.6Mn-0.15Zr |
Wire, Φ0.25 mm × 15 mm |
Disinfection |
SD rats |
Abdominal aorta |
3, 6 |
At 6 months of implantation, a significant reduction of inflammatory activities was found in the quinary alloy relative to the other Zn-based materials. And inflammation, but not smooth muscle cell hyperplasia, is correlated with neointimal growth for the Zn-Ag-based alloys |
[85] |
盡管Zn-0.1Li在大鼠腹主動脈觀察到長達11個月的慢性炎癥反應和內膜增生,但是Zn-0.4Li金屬片在大鼠股骨的表現非常好,純Zn和Zn-0.4Li植入部位均未見骨溶解、變形、脫位或氣影,與術后即刻相比,術后8周相鄰皮質骨顯示出更高的放射學密度,表明周圍成骨。與純Zn相比,Zn-0.4Li植入物周圍觀察到更多的膠原蛋白和新骨組織[87]。精加工成多孔支架的Zn-0.8Mn、Zn-0.8Sr合金也表現出令人滿意的結果。Zn-0.8Mn支架植入大鼠股骨外側髁處缺損,術后4周可見新骨形成,術后8和12周支架周圍出現大量新骨組織,骨小梁也比純Ti組更厚,在體內顯示出良好的成骨性能和生物相容性,在器官中也沒有鋅離子積累[88]。Zn-0.8Sr支架同樣表現出良好的骨缺損修復性能和骨生長趨勢,無炎癥反應[89]。Zn-0.5Mn植入大鼠脛骨4個月后,觀察到健康的骨和血管,骨髓病理切片顯示骨髓增生,不影響肝腎功能[90]。除此之外,Zn-0.4Fe、Zn-0.4Cu、Zn-2.0Ag、Zn-0.8Mg、Zn-0.8Ca、Zn-0.1Sr和Zn-0.1Mn在植入大鼠股骨后,也表現出良好的生物相容性,無骨溶解、畸形或脫位的跡象[91]。隨著時間的推移,植入物周圍的皮質骨變厚,放射學密度變高,表明周向成骨。以上結果支持了不同合金元素的鋅合金在骨科的應用前景。
表7 鋅合金在骨科及其他組織應用的動物試驗總結[87~93]
Table 7
Material | Shape | Disinfection/Sterilization | Animal |
Implant site |
Implant period |
Performance | Ref. |
---|---|---|---|---|---|---|---|
Zn, Zn-0.4Li |
Rod, Φ1.6 mm × 15 mm |
- |
SD rats |
Femoral |
2 months |
Neither pure Zn nor Zn-0.4Li implanted sites showed osteolysis, deformation, dislocation, or air shadows. Compared to immediate postoperation, the adjacent cortical bone showed higher radiographic densities at 8 weeks postoperation, indicating peripheral osteogenesis. Compared with pure Zn, more collagen and new bone tissue were observed around the Zn-0.4Li implants |
[87] |
Zn-0.8Mn, Zn-0.8Sr |
Porous scaffold |
- |
Rats |
Femoral condyle |
4, 8, and 12 weeks |
New bone formation was observed at 4 weeks after Zn-0.8Mn implantation, and a large amount of new bone tissue was observed around the scaffold at 8 and 12 weeks postoperation. The trabecular bone was thicker than that of pure Ti group. Zn-0.8Mn scaffold showed good osteogenic performance and biocompatibility in vivo. Zn ions were not accumulated in the organs. Zn-0.8Sr scaffold also has good bone defect repair performance and growth tendency without inflammatory reaction |
[88, 89] |
Zn-0.5Mn |
Φ1.5 mm × 5 mm |
UV disinfection |
SD rats |
Tibia |
4 months |
After 4 months implantation, healthy bone and blood vessels were observed, bone marrow hyperplasia was showed by pathological sections, liver and kidney functions were not affected |
[90] |
Zn-0.4Fe, Zn-0.4Cu, Zn-2.0Ag, Zn-0.8Mg, Zn-0.8Ca, Zn-0.1Sr, Zn-0.4Li, Zn-0.1Mn |
Rod, Φ1.6 mm × 15 mm |
- |
SD rats |
Femoral |
2 months |
The cortical bone surrounding the implant thickened and radiographic dense increased, indicating circumferential osteogenesis. All implants were biocompatible with no evidence of osteolysis, deformity or dislocation. At 2 months implantation, new bone was formed and contacted the implants directly |
[91] |
Zn, Zn-2Fe |
Φ7 mm × 2 mm |
- |
Wistar rats | Subcutaneous tissue of back |
4, 8, 12, 18, 24 weeks |
No tissue inflammation or necrosis was observed |
[93] |
Zn-0.8Li-0.1Mn |
Gastroin-testinal staple |
Disinfection |
Mini fragrant pigs |
Gastrointestinal anastomosis |
3 d, 8 weeks, 12 weeks |
In the early stage after surgery, there were a small amount of inflammatory cells (mainly neutrophils and lymphocytes) and macrophages around the Zn-Li-Mn and Ti alloy nails. Inflammation cells around the Zn-Li-Mn alloy nails were slightly less than the Ti alloy group. At 12 weeks postoperation, new gastrointestinal tissues were found around the nails in both groups, the tissues healed well, and the number of inflammatory cells was significantly reduced |
[92] |
由Zn-0.8Li-0.1Mn研制的胃腸釘展示了鋅基三元合金在胃腸道吻合中的應用[92]。術后12周,Zn-Li-Mn合金釘和鈦合金釘周圍均有少量炎癥細胞,主要包括中性粒細胞和淋巴細胞,還有少量巨噬細胞,且Zn-Li-Mn合金釘周圍的炎癥細胞數量略少于鈦合金釘。植入12周后,2組釘周圍均有新的胃腸組織,組織愈合良好,炎癥細胞數量明顯減少。表7[87~93]展示了鋅合金在骨科及其他組織中應用的動物試驗總結。
4 總結與展望
適宜的腐蝕速率、良好的力學性能和生物活性,使鋅合金成為被寄予厚望的可降解生物醫用金屬材料。近年來,研究者們對鋅合金的成分設計、加工制備過程、內部組織結構、表面改性及降解機理等方面進行了大量系統研究,不斷優化其力學性能、腐蝕速率及生物相容性,并積極拓展其臨床應用范圍。本文根據材料與機體相互作用的方式,總結了對鋅合金器械進行生物相容性評價的原則和方法。但是材料植入后的機體反應及機體與材料(器械)的相互作用極其復雜,是一個聯系的、動態的、長期的生理過程,從基礎研究到產品定型和優化需要經歷漫長的過程,對新型可降解植入器械的臨床試驗或者應用應該持樂觀且謹慎的態度。展望未來,仍有幾點生物相容性方面的考慮需要被重視。
(1) 盡管多數研究支持鋅合金在動物體內的生物相容性,但其降解過程中腐蝕產物層中金屬間顆粒的富集、吸收和轉運及其對組織再生的影響仍然令人擔憂。如何對鋅合金降解產物進行熒光標記,追蹤降解產物的吸收、轉運過程及相應的生物學表現,將是一項重大課題。
(2) 終產品植入物在運動疲勞中產生的應力損傷是否引起局部腐蝕甚至點蝕,從而導致植入物提前失效引起機體更多的物理損傷也是生物相容性研究的一個方面。另外,鋅合金植入物與其他金屬植入物配合使用可能會產生電偶腐蝕,改變產品臨床預期的降解速率,這種情況下的使用順序、空間和時間距離的安全性也應該有所考慮。
(3) 體外的細胞毒性評價作為一套敏感的毒性篩選系統,其作用仍然不可小覷。如何考慮局部微環境中細胞類型、蛋白、溶解O2的影響,結合體內降解速率、降解產物積累和周圍細胞的表現,建立適當的細胞毒性評價體系對于可降解鋅合金的臨床應用具有重要意義,也可以做為一項鋅合金加工設計時的體外篩選系統。
(4) 鋅合金降解過程中導致局部Zn2+濃度增加,Zn2+參與體內多種生理活動,應在時間效應和劑量效應下研究過量Zn2+觸發的信號通路、蛋白合成、物質轉運對機體的影響,是否會存在生理調控之外的信號通路激活,降解產物對周圍細胞包括炎癥細胞在分子水平的影響等。近年來分子生物學和生物信息學發展出的基因組學、蛋白質組學和代謝組學研究也可聯合應用于識別降解產物潛在的基因和細胞毒性。
(5) 鋅離子具有廣譜抗菌的特點,如何在臨床應用中減少植入材料表面細菌膜的形成從而降低植入物相關的感染也很有意義[94~98]。
來源--金屬學報